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Abstract. Starting from the first Painlevé equation, Painlev́e type equations of higher order are
obtained by using the singular point analysis.

1. Introduction

Painlev́e and his school [1–3] around the turn of the century investigated the second-order
equations of the form

y ′′ = F(z, y, y ′) (1.1)

whereF is rational iny ′, algebraic iny and locally analytic inz, and have no movable critical
points, i.e., the location of the singularities of any of the solutions other than poles depend only
on the equation. This property is known as the Painlevé property and ordinary differential
equations (ODEs) which possess it are said to be of Painlevé type. Within the M̈obius
transformation, they found 50 such equations. Distinguished amongst these 50 equations
are the six Painlev́e equations PI,PII , . . . ,PVI ; any of the other 44 equations can either be
integrated in terms of the known functions or can be reduced to one of the six equations.
Although the Painlev́e equations were discovered from strictly mathematical considerations,
they have appeared in many physical problems, and possess rich internal structure.

The Riccati equation is the only example for the first-order first-degree equation which
has the Painlev́e property. Before the work of Painlevé and his school, Fuchs [3,4] considered
the equation of the form

F(z, y, y ′) = 0 (1.2)

whereF is a polynomial iny andy ′ and locally analytic inz, such that the movable branch
points are absent, that is, the generalization of the Riccati equation. The irreducible form of
the first-order algebraic differential equation of the second degree is

a0(z)(y
′)2 +

2∑
i=0

bi(z)y
iy ′ +

4∑
j=0

cj (z)y
j = 0 (1.3)

wherebi , cj are analytic functions ofz anda0(z) 6= 0. Briot and Bouquet [3] considered the
subcase of (1.2). That is, first-order binomial equations of degreem ∈ Z+:

(y ′)m + F(z, y) = 0 (1.4)
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whereF(z, y) is a polynomial of degree at most 2m in y. It was found that there are six types
of equation of the form (1.4). But all these equations are either reducible to a linear equation
or solvable by means of elliptic functions [3].

Second-order second-degree Painlevé-type equations of the following form:

(y ′′)2 = E(z, y, y ′)y ′′ + F(z, y, y ′) (1.5)

whereE andF are assumed to be rational iny, y ′ and locally analytic inz were the subject of
the papers [5–7]. In [5,6], the special form,E = 0, and henceF is polynomial iny andy ′ of
(1.5) was considered. Also in this case no new Painlevé-type equation was discovered, since
all of them can be solved either in terms of the known functions or one of the six Painlevé
equations. In [7], it was shown that all the second-degree equations obtained in [5, 6], the
E = 0 case, and some of the second-degree equations such thatE 6= 0 can be obtained from
PI, . . . ,PVI by using the following transformations which preserve the Painlevé property:

u(z, α̂) = y ′ +
∑2

i=0 aiy
i∑2

i=0 biy
i

(1.6)

and

u(z, α̂) = (y ′)2 +
∑2

i=0 ai(z)y
iy ′ +

∑4
j=0 bj (z)y

j∑2
i=0 ci(z)y

iy ′ +
∑4

j=0 dj (z)y
j

= 0 (1.7)

whereai , bj , ci , dj are analytic functions ofz. That is, ify solves one of the Painlevé equation
with parameter setα thenu solves a second-order second-degree Painlevé-type equation of
the form (1.5).

The special form, of polynomial type, of the third-order Painlevé-type equations

y ′′′ = F(z, y, y ′, y ′′) (1.8)

was considered in [8,9]. The most well known third-order equation is Chazy’s ‘natural-barrier’
equation

y ′′′ = 2yy ′′ − 3y ′2 +
4

36− n2
(6y ′ − y2)2. (1.9)

The casen = ∞ appears in several physical problems. Equation (1.9) is integrable for all real
and complexn andn = ∞. Its solutions are rational for 26 n 6 5, and have a circular natural
barrier forn > 7 andn = ∞. Bureau [9] considered the third-order equation of Painlevé type
of the following form:

y ′′′ = P1(y)y
′′ + P2(y)y

′2 + P3(y)y
′ + P4(y) (1.10)

wherePn(y) is a polynomial iny of degreen with analytic coefficients inz. Also in [9] were
some of the fourth-order polynomial-type equations

y(4) = ayy ′′′ + by ′y ′′ + cy2y ′′ + dyy ′2 + ey3y ′ + fy5 + F(z, y) (1.11)

where

F(z, y) = a0y
′′′ + (c1y + c0)y

′ + d0y
′2 + (e2y

2 + e1y + e0)y
′ + f4y

4 + f3y
3 + f2y

2 + f1y + f0

(1.12)

and all the coefficientsa, b, c, d, e, f with or without subscripts are assumed to be analytic
functions ofz.

In addition to their mathematically rich internal structure and frequent appearance in many
physical problems, Painlevé equations play an important role for the completely integrable
partial differential equations (PDEs). Ablowitzet al [10] demonstrated a close connection
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between completely integrable PDEs and Painlevé equations. They formulated the Painlevé
conjecture or Painlev́e ODE test. This conjecture provides a necessary condition to test whether
a given PDE might be completely integrable. Weisset al [11] introduced the Painlevé property
for PDEs or the Painlev́e PDE test as a method of applying the Painlevé ODE test directly to
a given PDE without having to reduce it to an ODE.

Recently, Kudryashov [12] and Clarksonet al[13] obtained the higher-order Painlevé-type
equations, the first and second Painlevé-hierarchy, by similarity reduction from the Korteweg-
de Vries (KdV) and the modified Korteweg-de Vries (mKdV) hierarchies, respectively. The
procedure used in [12,13] can be summarized as follows: the KdV hierarchy can be written as

ut +
∂

∂x
Ln(u) = 0 n = 0, 1, 2 (1.13)

whereLn satisfies the Lenard recursion relation

∂

∂x
Ln+1 =

(
∂3

∂x3
+ 2u

∂

∂x
+ ux

)
Ln n = 1, 2, 3 (1.14)

beginning withL0(u) = 1,L1(u) = u. The KdV equation has the similarity reduction

u(x, t) = v(z)− λt z = x + 3λt2 (1.15)

with λ the arbitrary constant, wherev(z) is solvable in terms of the first Painlevé equation. By
using the similarity reduction of KdV, one can obtain the first Painlevé hierarchy

Pn+1(v)− λz = 0 n = 0, 1, 2, 3 (1.16)

wherePn satisfies the recursion relation

d

dz
Pn+1 =

(
d3

dz3
+ v

d

dz
+ v′

)
Pn n = 1, 2, 3 (1.17)

starting withP0(v) = 1 andP1(v) = v. Note that, forn = 1, equation (1.16) gives the first
Painlev́e equation

v′′ = 6v2 + z (1.18)

and forn = 2

v(4) + 5vv′′ + 5
2v
′2 + 5

2v
3 + k1v − k2z = 0 (1.19)

whereki are arbitrary constants. Therefore, by using the operatorPn, one can obtain the
Painlev́e-type equations of order 2n starting from the first Painlevé equation. In [12], the
relation between the first and second Painlevé hierarchy was also examined.

In this paper the first Painlevé hierarchy is investigated by using the Painlevé ODE test,
singular point analysis. It is possible to obtain a Painlevé-type equation of any order, as
well as the known ones, starting from the first Painlevé equation. Singular point analysis is an
algorithm introduced by Ablowitzet al [10] to test whether a given ODE satisfies the necessary
conditions to be of Painlevé type.

The procedure to obtain higher-order Painlevé-type equations starting from the first
Painlev́e equation may be summarized as follows.

(I) Take annth-order Painlev́e-type differential equation

y(n) = F(z, y, y ′, . . . , y(n−1)) (1.20)

whereF is analytic inz and rational in its other arguments. Ify ∼ y0(z − z0)
α asz → z0,

thenα is a negative integer for certain values ofy0. Moreover, the highest derivative term
is one of the dominant terms. Then the dominant terms are of orderα − n. There aren
resonancesr0 = −1, r1, r2, . . . , rn−1, for all a = 1, 2, . . . , (n − 1) being non-negative real
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distinct integers such thatQ(rj ) = 0, j = 0, 1, 2, . . . , (n− 1). The compatibility conditions,
for the simplified equation that retains only dominant terms of (1.20) are identically satisfied.
Differentiating the simplified equation with respect toz yields

y(n+1) = G(z, y, y ′, . . . , y(n)) (1.21)

whereG contains the terms of orderα − n− 1, and the resonances of (1.21) are the roots of
Q(rj )(α + r − n) = 0. Hence, equation (1.21) has a resonancern = n− α in addition to the
resonances of (1.20). Equation (1.21) passes the Painlevé test provided thatrn is a positive
integer andrn 6= ri , i = 1, 2, . . . , (n−1) and is a positive integer. Moreover, the compatibility
conditions are identically satisfied, that isz0, yr1, . . . , yrn are arbitrary.

(II) Add the dominant terms which are not contained inG. Then the resonances of the
new equation are the zeros of a polynomialQ̃(r) of ordern + 1. Find the coefficients of̃Q(r)
such that there is at least one principal Painlevé branch. That is, alln + 1 resonances (except
r0 = −1) are real positive distinct integers for at least one possible choice of(α, y0). The other
possible choices of(α, y0) may give the secondary Painlevé branch, that is all the resonances
are distinct integers.

(III) Add the non-dominant terms which are the terms of weight less thanα − n − 1,
with analytic coefficients ofz. Find the coefficients of the non-dominant terms by using the
compatibility conditions.

The Painlev́e test was improved in such a way so that negative resonances can be treated
[14]. In this paper, we will consider only the ‘principal branch’ that is, all the resonancesri
(exceptr0 = −1 ) are positive real distinct integers and the number of resonances is equal to
the order of the differential equation for a possible choice of(α, y0). Then, the compatibility
conditions give a full set of arbitrary integration constants. The other possible choices of(α, y0)

may give a ‘secondary branch’ which possess several distinct negative integer resonances.
Negative but distinct integer resonances give no conditions which contradict integrability [15].
In this paper, we start with the first Painlevé equation and obtain the third-, fourth-, fifth- and
sixth-order equations of Painlevé type. A similar procedure can be used by starting from PII ,
PIII , . . . ,PVI to obtain the higher-order equations. These results will be published elsewhere.

2. Third-order equations: P(3)
I

The first Painlev́e equation, PI is

y ′′ = 6y2 + z. (2.1)

The Painlev́e test gives that there is only one branch and

(α, y0) = (−2, 1) Q(r) = r2 − 5r − 6. (2.2)

The dominant terms arey ′′ andy2 which are of order−4 asz→ z0. Taking the derivative of
the simplified equation gives

y ′′′ = ayy ′ (2.3)

wherea is a constant which can be introduced by replacingy with λy, such that 12λ = a.
For equation (2.3),(α, y0) = (−2, 12/a). No more polynomial-type terms of weight−5 with
constant coefficients can be added to (2.3). The resonances of (2.3) are the zeros of

Q̃(r) = Q(r)(r − 4). (2.4)

Hence, the resonances are(r0, r1, r2) = (−1, 4, 6). The next step is to add the terms of weight
less than−5 with analytic coefficients ofz. That is,

y ′′′ = ayy ′ +A(z)y ′′ +B(z)y2 +C(z)y ′ +D(z)y +E(z). (2.5)
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The linear transformation

y(z) = µ(z)u(t) + ν(z) t = ρ(z) (2.6)

whereµ, ν andρ are analytic functions ofz, which preserves the Painlevé property. By using
the transformation (2.6), one can set

aA + 2B = 0 C = 0 a = 12. (2.7)

Then, substituting

y = y0(z− z0)
−2 +

6∑
j=1

yj (z− z0)
j−2 (2.8)

into equation (2.6) gives that

y0 = 1 y1 = 0 y2 = 0 y3 = D(z0)/12. (2.9)

The recursion relation forj = 4 implies that, ify4 = arbitrary, then

D′ − AD = 0 (2.10)

and forj = 5

y5 = − 1
72(12E0 + 20B0y4 + 12D2 + 2B1D0) (2.11)

whereBk, k = 0, 1, 2, . . . and similarlyDk,Ek denote the coefficient of thekth-order term of
Taylor series expansion of the appropriate function aboutz = z0. The compatibility condition
at the resonancer = 6 implies that

A′ +A2 = 0 (2.12a)

−6(AE +E′)−D(D − AA′) + 3DA′′ − 3AD′′ −D′′′ = 0 (2.12b)

if y6 is arbitrary. According to (2.12a), there are two cases that should be considered separately.
(I) A(z) = 0. Equations (2.7), (2.10) and (2.12b) imply thatB = 0,D = c1 = constant,

E(z) = −(c2
1/6)z + c2, c2 = constant. Then the canonical form of a third-order Painlevé-type

equation is

y ′′′ = 12yy ′ + c1y − 1
6c

2
1z + c2. (2.13)

If c1 = c2 = 0, then (2.13) has the first integral

y ′′ = 6y2 + k k = constant (2.14)

which has the solution in terms of the elliptic functions. Ifc1 6= 0, then replacez + c2/k
2 by

z wherek = −c1/6, and then replacey by βy andz by γ z such thatγ 2β = 1 andkγ 3 = −1
in (2.13). It then takes the form of

y ′′′ = 12yy ′ + 6y − 6z. (2.15)

If one letsy = u′, integrates with respect toz once and replacesu by u− c/6 to eliminate the
integration constantc, then (2.15) gives

u′′′ = 6u′2 + 6u− 3z2. (2.16)

Equation (2.16) was also given by Chazy and Bureau [8,9].
(II) A(z) = 1/(z− c1). Equations (2.7), (2.10) and (2.12b) give

B = − 6

z− c1
D = c2(z− c1) E = − 1

24
c2

2(z− c1)
3 +

c3

z− c1
(2.17)

whereci , i = 1, 2, 3, are constants. Then the canonical form after replacingz− c1 by z is

y ′′′ = 12yy ′ +
1

z
(y ′′ − 6y2) + c2zy +

c3

z
− c2

2

24
z3. (2.18)
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Equation (2.18) was also considered in [9]. Replacingz byγ z andy byβy, such thatγ 2β = 1
andc2γ

4 = 12 reduces equation (2.18) to

y ′′′ = 12yy ′ +
1

z
(y ′′ − 6y2 − k) + 12zy − 6z3 (2.19)

wherek is an arbitrary constant. Integrating (2.19) once yields(
u′′ − 6u2 − k1

4

)2

= z2

(
u′2 − 4u3− k1

2
u

)
(2.20)

wherek1 = −(k + 72)/3 andu = y − z2/12. There exists a one-to-one correspondence
betweenu(z) and the solution of the fourth Painlevé equation [7].

3. Fourth-order equations: P(4)
I

Differentiating (2.3) with respect toz gives the termsy(4), y ′2, yy ′′, all of which are of order
−6 for α = −2 and asz → z0. Adding the termy3 which is also of order−6, gives the
following simplified equation:

y(4) = a1y
′2 + a2yy

′′ + a3y
3 (3.1)

whereai , i = 1, 2, 3 are constants. Substituting

y = y0(z− z0)
−2 + βy1(z− z0)

r−2 (3.2)

into the above equation gives the following equations for resonancer and fory0, respectively:

Q(r) = (r + 1)[r3− 15r2 + (86− a2y0)r + 2(2a1y0 + 3a2y0 − 120)] = 0 (3.3a)

a3y
2
0 + 2(2a1 + 3a2)y0 − 120= 0. (3.3b)

Equation (3.3b) implies that, in general, there are two branches of Painlevé expansion, if
a3 6= 0. Now, one should determiney0j , j = 1, 2 andai such that at least one of the branches
is the principal branch. That is, all the resonances (exceptr0 = −1 which is common for both
branches) are distinct positive integers for one of(−2, y0j ), j = 1, 2. Negative but distinct
resonances for the secondary branch may be allowed, since they give no conditions which
contradict the Painlev́e property.

If y01, y02 are the roots of (3.3b), by setting

P(y0j ) = −2[(2a1 + 3a2)y0j − 120] j = 1, 2 (3.4)

and if(r1, r2, r3), (r̃1, r̃2, r̃3) are the resonances corresponding toy01 andy02 respectively, then
one can have

3∏
i=1

ri = P(y01) = p
3∏
i=1

r̃i = P(y02) = q (3.5)

wherep, q are integers and are such that, at least one of them is positive. Equation (3.3b)
gives

y01 + y02 = − 2

a3
(2a1 + 3a2) y01y02 = −120

a3
. (3.6)

Then equation (3.4) can be written as

P(y01) = 120

(
1− y01

y02

)
(3.7a)

P(y02) = 120

(
1− y02

y01

)
. (3.7b)
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Then, forpq 6= 0,p, q satisfy the following Diophantine equation:
1

p
+

1

q
= 1

120
. (3.8)

Now, one should determine all integer solutions of the Diophantine equation under certain
conditions. Equation (3.3a) implies that

∑3
i=1 ri =

∑3
i=1 r̃i = 15. Let (r1, r2, r3) be the

distinct positive integers, thenr1 + r2 + r3 = 15 implies that there are 12 possible choices
of (r1, r2, r3). Then (3.8) has negative integer solutionsq for each of the possible values
of p exceptp = 120. The casep = 120 which corresponds to(r1, r2, r3) = (4, 5, 6)
will be considered later. The equations (3.6), (3.7a) and

∑
i 6=j rirj = 86− a2y01 determine

y01, y02, a1, a3 in terms ofa2. Hence, all the coefficients of (3.3a) are determined such that
its roots(r1, r2, r3) corresponding toy01 are positive distinct integers, and the roots (r̃1, r̃2, r̃3)
corresponding toy02are distinct integers such that

∏3
i=1 r̃i = q < 0. Then, it should be checked

whether the resonances(r̃1, r̃2, r̃3) are distinct integers (i.e. existence of the secondary branch).
There are four out of 11 cases such that(r1, r2, r3) corresponding toy01 are positive distinct
integers and(r̃1, r̃2, r̃3) corresponding toy02 are distinct integers. These cases are as follows.
Case 1:

y01 = 30

a2
(r1, r2, r3) = (2, 3, 10)

y02 = 60

a2
(r̃1, r̃2, r̃3) = (−2, 5, 12)

a1 = 0 a3 = − 1
15a

2
2.

(3.9)

Case 2:

y01 = 20

a2
(r1, r2, r3) = (2, 5, 8)

y02 = 60

a2
(r̃1, r̃2, r̃3) = (−3, 8, 10)

a1 = 1
2a2 a3 = − 1

10a
2
2.

(3.10)

Case 3:

y01 = 18

a2
(r1, r2, r3) = (3, 4, 8)

y02 = 90

a2
(r̃1, r̃2, r̃3) = (−5, 8, 12)

a1 = 1
2a2 a3 = − 2

27a
2
2.

(3.11)

Case 4:

y01 = 15

a2
(r1, r2, r3) = (3, 5, 7)

y02 = 120

a2
(r̃1, r̃2, r̃3) = (−7, 10, 12)

a1 = 3
4a2 a3 = − 1

15a
2
2.

(3.12)

For each case the compatibility conditions are identically satisfied. To find the canonical form
of the fourth-order equations of Painlevé type, one should add non-dominant terms with the
coefficients which are analytic functions ofz. That is, one should consider the following
equation:

y(4) = a1y
′2 + a2yy

′′ + a3y
3 +A(z)y ′′′ +B(z)yy ′ +C(z)y ′′ +D(z)y2 +E(z)y ′

+F(z)y +G(z). (3.13)

The coefficientsA, . . . ,G can be determined by using the compatibility conditions.
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Case 1. By using the linear transformation (2.6), one can set

2a2A + 5B = 0 C = 0 a2 = 30. (3.14)

Substituting

y = y01(z− z0)
−2 +

r3∑
j=1

yj (z− z0)
j−2 (3.15)

into equation (3.13) gives the recursion relation foryj . The recursion relation yieldsy1 = 0
for j = 1 and forj = r1 = 2,D = 0 if y2 is arbitrary. Ify3 is arbitrary, thenB = E = 0 and
then the first equation of (3.14) implies thatA = 0. The recursion relation forj = r3 = 10
implies thatF = c1 = constant andG = c2 = constant ify10 is arbitrary. Therefore, the
canonical form is

y(4) = 30yy ′′ − 60y3 + c1y + c2. (3.16)

For c1 = 0, replacingy by−y yields

y(4) = −30yy ′′ − 60y3 + c2 (3.17)

wherey(z) is the stationary solution of Caudrey–Dodd–Gibbon equation [16].

Case 2. Linear transformation (2.6) allows one to set

3a2A + 5B = 0 C = 0 a2 = 20. (3.18)

Then, the compatibility conditions imply thatD = 0 for j = 2, B = E = 0, F(z) = c1 =
constant forj = 5 andG = c2z + c3, c2 andc3 are constant, forj = 8. Then the canonical
form for this case is

y(4) = 10(2yy ′′ + y ′2 − 4y3) + c1y + c2z + c3. (3.19)

One can always choosec3 = 0 by replacingz + c3/c2 by z. Replacingy by −y/4 in (3.19)
gives

y(4) + 5yy ′′ + 5
2y
′2 + 5

2y
3 + k1y + k2z = 0 (3.20)

whereki = constant. Equation (3.20) was also introduced by Kudryashov [12].

Case 3. By using the linear transformation (2.6), one can set

2a2A + 3B = 0 a2C + 3D = 0 a2 = 18. (3.21)

Then, the compatibility conditions imply thatB = E = F = 0 andC = c1, D = −6c1,
G = c2z + c3, whereci , i = 1, 2, 3 are constants. Therefore, the canonical form of the
fourth-order Painlev́e-type equation for this case is

y(4) = 18yy ′′ + 9y ′2 − 24y3 + c1y
′′ − 6c1y

2 + c2z + c3. (3.22)

Forc2 6= 0, replacingz+c3/c2 by z and then replacingz byγ z andy byβy such thatβγ 2 = 1,
c2γ

7 = 1 reduces (3.22) into the following form:

y(4) = 18yy ′′ + 9y ′2 − 24y3 + k1y
′′ − 6k1y

2 + z (3.23)

wherek1 = c1γ
2.
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Case 4. Linear transformation (2.6) allows one to set

4a2A + 5B = 0 D = 0 a2 = 15. (3.24)

Then the compatibility conditions at the resonancesj = 3, 5, 7 imply that, if y3, y5, y7 are
arbitrary thenB = C = E = 0 andF = c1 = constant,G = c2 = constant. Therefore, the
canonical form is

y(4) = 15yy ′′ + 45
4 y
′2 − 15y3 + c1y + c2. (3.25)

If one setsy = −2u then (3.25) takes the form of

u(4) + 30uu′′ + 45
2 u
′2 + 60u3 + k1u + k2 = 0 (3.26)

wherek1 = −c1, k2 = c2/2. u(z) is the stationary solution of the Kuperschmidt equation [16]
for k1 = 0.

If a3 = 0, equation (3.3) reduces to

Q(r) = (r + 1)[r3− 15r2 + (86− a2y0)r − 120]= 0 (3.27a)

(2a1 + 3a2)y0 − 60= 0 (3.27b)

and hence, there is only one Painlevé branch which has to be the principal branch. (3.27a)
implies thatr0 = −1 and

∑3
i=1 ri = 15 which gives 12 possible positive distinct integers

(r1, r2, r3). However,
∏3
i=1 ri = 120 implies that(r1, r2, r3) = (4, 5, 6) is the only possible

choice of the resonances. Equation (3.27b) and
∑

i 6=j rirj = 86− a2y0 imply thata1 = a2.
Then, the simplified equation is

y(4) = a1(yy
′′ + y ′2). (3.28)

Adding the non-dominant terms with the analytic coefficients ofz gives

y(4) = a1(yy
′′ + y ′2) +A(z)y ′′′ +B(z)yy ′ +C(z)y ′′ +D(z)y2 +E(z)y ′ + F(z)y +G(z).

(3.29)

One can always set

a2A +B = 0 C = 0 a2 = 12 (3.30)

by using the linear transformation (2.6). The compatibility conditions at the resonances
r = 4, 5, 6 imply thaty4, y5, y6 are arbitrary andB = D = 0 and

E = c1

2
z + c2 F = c1 G = −1

6

(c1

2
z + c2

)2
(3.31)

wherec1, c2 are constants. Hence, the canonical form is

y(4) = 12(yy ′′ + y ′2) +
(c1

2
z + c2

)
y ′ + c1y − 1

6

(c1

2
z + c2

)2
. (3.32)

If c1 = 0, then integrating (3.32) once gives equation (2.15). Ifc1 6= 0, lettingc1 = −12k1,
c2 = −6k2 first, replacingz + k2/k1 by z, and then replacingz by γ z, y by βy, such that
βγ 2 = 1, k1γ

4 = 1 then equation (3.32) takes the form of

y(4) = 12(yy ′)′ − 6zy ′ − 12y − 6z2. (3.33)

If one letsy = −u′ and integrates the resulting equation once then (3.33) yields

u(4) + 12u′u′′ = 6zu′ + 6u + 2z3− k (3.34)

after replacingu by βu andz by γ z such thatβγ = −1, γ 4 = −1. Equation (3.34) was also
obtained by Bureau [9] and belongs to the second Painlevé equation.
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4. Fifth-order equations: P(5)
I

Differentiating (3.1) with respect toz gives the termsy(5), yy ′′′, y ′y ′′, y2y ′ which are all the
dominant terms forα = −2 andz→ z0. Therefore, the simplified equation is

y(5) = a1yy
′′′ + a2y

′y ′′ + a3y
2y ′ (4.1)

whereai , i = 1, 2, 3 are constants. Substituting (3.2) into (4.1) gives the following equations
for the resonancer andy0:

(r + 1){r4 − 21r3 + (176− a1y0)r
2 + [2(5a1 + a2)y0 − 378]r

+[1800− 18(2a1 + a2)y0 − a3y
2
0]} = 0 (4.2a)

a3y
2
0 + 6(2a1 + a2)y0 − 360= 0. (4.2b)

Equation (4.2a) implies that one of the resonances,r0 = −1, corresponds to the arbitrariness
of z0. (4.2b) implies the existence of two Painlevé branches corresponding to(−2, y0i ),
i = 1, 2. Let(r1, r2, r3, r4) and(r̃1, r̃2, r̃3, r̃4) be the resonances corresponding toy01 andy02,
respectively. Setting,

P(y0j ) = 1800− 18(2a1 + a2)y0j − a3y
2
0j j = 1, 2 (4.3)

then, (4.2a) implies that

4∏
i=1

ri = P(y01) = p
4∏
i=1

r̃i = P(y02) = q (4.4)

wherep, q are integers such that at least one of them is positive, to have the principal branch.
From equation (4.2b), one can have

a3 = − 360

y01y02
2a1 + a2 = 60

y01y02
(y01 + y02). (4.5)

By using the above equation, (4.3) yields the following Diophantine equation, ifpq 6= 0:

1

p
+

1

q
= 1

720
. (4.6)

Now, one should determine all possible integer solutions(p, q) of (4.6). (4.2a) implies that∑4
i=1 ri = 21. Then, there are 27 possible cases for(r1, r2, r3, r4) (i.e. 27 possible values of

p) such thatri are positive distinct integers. The Diophantine equation implies that there are
12 out of 27 cases such that bothp > 0, q < 0 are integers. By using the equations∑

i 6=j
rirj = 176− a1y01

∑
i 6=j 6=k

rirj rk = −2[(5a1 + a2)y01− 378] (4.7)

and (4.5),y01, y02, a2, a3 can be obtained in terms ofa1 for each 12 possible integer values of
(p, q). However, there are only four out of 12 cases such that the resonances(r̃1, r̃2, r̃3, r̃4)

corresponding toy02 are distinct integers. These cases and the corresponding simplified
equations are as follows.
Case 1:

y01 = 30

a1
(r1, r2, r3, r4) = (2, 3, 6, 10)

y02 = 60

a1
(r̃1, r̃2, r̃3, r̃4) = (−2, 5, 6, 12)

a2 = a1 a3 = − 1
5a

2
1 y(5) = a1(yy

′′′ + y ′y ′′ − 1
5a1y

2y ′).

(4.8)
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Case 2:

y01 = 15

a1
(r1, r2, r3, r4) = (3, 5, 6, 7)

y02 = 120

a1
(r̃1, r̃2, r̃3, r̃4) = (−7, 6, 10, 12)

a2 = 5
2a1 a3 = − 1

5a
2
1 y(5) = a1(yy

′′′ + 5
2y
′y ′′ − 1

5a1y
2y ′).

(4.9)

Case 3:

y01 = 18

a1
(r1, r2, r3, r4) = (3, 4, 6, 8)

y02 = 90

a1
(r̃1, r̃2, r̃3, r̃4) = (−5, 6, 8, 12)

a2 = 2a1 a3 = − 2
9a

2
1 y(5) = a1(yy

′′′ + 2y ′y ′′ − 2
9a1y

2y ′).

(4.10)

Case 4:

y01 = 20

a1
(r1, r2, r3, r4) = (2, 5, 6, 8)

y02 = 60

a1
(r̃1, r̃2, r̃3, r̃4) = (−3, 6, 8, 10)

a2 = 2a1 a3 = − 3
10a

2
1 y(5) = a1(yy

′′′ + 2y ′y ′′ − 3
10a1y

2y ′).

(4.11)

The compatibility conditions for all four cases are identically satisfied.
To obtain the canonical form of the fifth-order equation of Painlevé type, one should add

the non-dominant terms of weight<7 for α = −2 with analytic coefficients ofz. Therefore,
the general form is

y(5) = a1yy
′′′ + a2y

′y ′′ + a3y
2y ′ +A(z)y(4) +B(z)y ′′′ +C(z)yy ′′ +D(z)y ′′ +E(z)y ′2

+F(z)yy ′ +G(z)y ′ +H(z)y3 + J (z)y2 +K(z)y +L(z). (4.12)

The coefficientsA(z), . . . , L(z) can be determined by using the compatibility conditions.
Substituting

y = y01(z− z0)
−2 +

r4∑
j=1

yj (z− z0)
j−2 (4.13)

into (4.12) gives the recursion relation foryj . The recursion relations forj = r1, r2, r3, r4 give
the compatibility conditions ifyr1, yr2, yr3, yr4 are arbitrary.

Case 1. By using the linear transformation (2.6), one can set

2a2
1A + 3a1C + 2a1E + 15H = 0 F = 0 a1 = 30 (4.14)

then,y01 = 1 andy1 = 0. The compatibility conditions atj = 2, 3, 6, 10 imply that all the
coefficients are zero except

G = c1z + c2 K = 2c1 (4.15)

wherec1, c2 are constants. Then the canonical form for this case is

y(5) = 30(yy ′′′ + y ′y ′′ − 6y2y ′) + (c1z + c2)y
′ + 2c1y. (4.16)

If c1 6= 0, replacingz + c2/c1 by z and then replacingz by γ z andy by βy such thatγ 2β = 1,
c1γ

5 = 1 in (4.16) gives

y(5) = 30(yy ′′′ + y ′y ′′ − 6y2y ′) + zy ′ + 2y. (4.17)
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Case 2. One can always choose

8a2
1A + 6a1C + 4a1E + 15H = 0 4a1B + 5F = 0 a1 = 15 (4.18)

by using the linear transformation (2.6). Theny01 = 1, y1 = y2 = 0. The compatibility
conditions atj = 3, 5, 6, 7 imply that all the coefficients are zero except

G = c1z + c2 K = 2c1 (4.19)

wherec1, c2 are constants. Then the canonical form for this case is

y(5) = 15(yy ′′′ + 5
2y
′y ′′ − 3y2y ′) + (c1z + c2)y

′ + 2c1y. (4.20)

If c1 6= 0, replacingz + c2/c1 by z and then replacingz by γ z andy by βy such thatγ 2β = 1,
c1γ

5 = 1 in (4.20) gives

y(5) = 15(yy ′′′ + 5
2y
′y ′′ − 3y2y ′) + zy ′ + 2y. (4.21)

Case 3. By using the transformation (2.6) one can sety01 = 1, y1 = y2 = 0. That is,

10a2
1A + 9a1C + 6a1E + 27H = 0 6a1B + 9F = 0 a1 = 18. (4.22)

The compatibility conditions atj = 3, 4, 6, 8 give

6D + J = 0 (4.23)

−6C + 4E − 3H = 0 G = 0 (4.24)

24F ′ − 48J − FH = 0 − 24K ′ +HK = 0 (4.25)

and

8E + 3H = 0 24H ′ +H 2 = 0 24J ′ +HJ = 0 (4.26)

respectively. The second equation of (4.26) implies that there are two cases that should be
considered separately.

(a)H(z) = 0. Equations (4.22)–(4.26) and the compatibility condition atj = 8 imply
that all the coefficients are zero except

F = c1 B = − 1
6c1 L = c2 (4.27)

wherec1, c2 are constants. Then, the canonical form of the equation for this case is

y(5) = 18(yy ′′′ + 2y ′y ′′ − 4y2y ′)− 1
6c1y

′′′ + c1yy
′ + c2. (4.28)

(b)H(Z) = 24/(z− c): For simplicity, let the constantc = 0. Then equations (4.22)–(4.26)
and the compatibility condition atj = 8 implies that there are the two following distinct cases:

(i)

A = 1

z
B = c2

6
C = −18

z
D = − c2

6z
E = −9

z

F = −2c2 J = c2

z
K = 0, L = c1

z

(4.29)

wherec1, c2 are constants. Then, the canonical form is

y(5) = 18(yy ′′′ + 2y ′y ′′ − 4y2y ′) +
1

z
y(4) +

c2

6
y ′′′ − 18

z
yy ′′

− c2

6z
y ′′ − 9

z
y ′2 − 2c2yy

′ +
24

z
y3 +

c2

z
y2 +

c1

z
. (4.30)

Whenc2 = 0; if one lets

u = y(4) − 3(6yy ′′ + 3y ′2 − 8y3) (4.31)
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then equation (4.30) can be written as

u′ = 1

z
u +

c1

z
. (4.32)

Hence, (4.30) has the first integral

y(4) = 3(6yy ′′ + 3y ′2 − 8y3) + kz− c1 (4.33)

wherek is an arbitrary constant. Equation (4.33) is nothing but equation (3.23) withk1 = 0.
(ii) D = G = J = 0 and

A = 1

z
B = −c3

2
z C = −18

z
E = −9

z

F = 6c3z K = c2
3

2
z L = − c

3
3

36
z2 +

c4

z

(4.34)

wherec3, c4 are constants. Then, the canonical form is

y(5) = 18(yy ′′′ + 2y ′y ′′ − 4y2y ′) +
1

z
y(4) − c3

2
zy ′′′ − 18

z
yy ′′

−9

z
y ′2 + 6c3zyy

′ +
24

z
y3 +

c2
3

2
zy − c3

3

36
z2 +

c4

z
. (4.35)

Whenc3 = 0, (4.35) has the same first integral as (4.33).

Case 4. By using the transformation one can set

3a2
1A + 3a1C + 2a1E + 10H = 0 F = 0 a1 = 20. (4.36)

The compatibility conditions atj = 2, 5 imply thatB = 0 andD = 0, respectively. The
compatibility conditions atj = 6, 8 imply that

4E +H = 0 (4.37)

and

J = 0 − 7C + 6E − 2H = 0 40H ′ +H 2 = 0 40K ′ +KH = 0 (4.38)

respectively. Therefore, there are two cases that should be considered separately: (a)H(z) = 0
and (b)H(z) = 40/z (for simplicity the integration constant is set to zero).

(a) H(z) = 0. Equations (4.36)–(4.38) imply that all the coefficients are zero except
G = c1z + c2,K = 2c1 andL(z) = c3, whereci are constants. Then, the canonical form is

y(5) = 20(yy ′′′ + 2y ′y ′′ − 6y2y ′) + (c1z + c2)y
′ + 2c1y + c3. (4.39)

(b)H(z) = 40/z. Equations (4.36)–(4.38) and the compatibility conditions atj = 5, 8
imply that

A = 1

z
B = 0 C = −20

z
D = 0 E = −10

z

F = 0 G = −k1 J = 0 K = k1

z
L = k2

z

(4.40)

wherek1, k2 are constants. Then, the canonical form is

y(5) = 20(yy ′′′ + 2y ′y ′′ − 6y2y ′) +
1

z
y(4) − 20

z
yy ′′ − 10

z
y ′2 − k1y

′ +
40

z
y3 +

k1

z
y +

k2

z
.

(4.41)

Whenk1 = 0, if one lets

u = y(4) − 10(2yy ′′ + y ′2 − 4y3) (4.42)
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then equation (4.41) can be written as

u′ = 1

z
u +

k2

z
. (4.43)

Hence, the first integral of (4.41) is

y(4) = 10(2yy ′′ + y ′2 − 4y3) + k3z− k2 (4.44)

wherek3 is an arbitrary constant. Replacingy by−y/4 in (4.44) gives (3.20) withk1 = 0.

5. Sixth-order equations: P(6)
I

Differentiating (4.1) with respect toz gives the termsy(6), yy(4), y ′y ′′′, y ′′2, y2y ′′, yy ′2 all of
which are of order−8 for α = −2 asz→ z0. Adding the termy4 which is also of order−8
gives the following simplified equation:

y(6) = a1yy
(4) + a2y

′y ′′′ + a3y
′′2 + a4y

2y ′′ + a5yy
′2 + a6y

4 (5.1)

whereai , i = 1, 2, . . . ,6 are constants. Substituting (3.2) into (5.1) gives the following
equations for the resonancer andy0:

(r + 1){r5− 28r4 + (323− a1y0)r
3 + [(15a1 + 2a2)y0 − 1988]r2

−[a4y
2
0 + 2(43a1 + 10a2 + 6a3)y0 − 7092]r + 2[(2a5 + 3a4)y

2
0

+12(10a1 + 4a2 + 3a3)y0 − 7560]} = 0 (5.2a)

a6y
3
0 + 2(3a4 + 2a5)y

2
0 + 12(10a1 + 4a2 + 3a3)y0 − 5040= 0. (5.2b)

Equation (5.2a) implies that one of the resonances,r0 = −1, corresponds to the arbitrariness
of z0. Two cases should now be considered separately: (a)a6 = 0 and (b)a6 6= 0.

(a)a6 = 0. There are two Painlevé branches corresponding to(−2, y0j ), j = 1, 2, where
y0j are the roots of

(3a4 + 2a5)y
2
0 + 6(10a1 + 4a2 + 3a3)y0 − 2520= 0. (5.3)

Then, one has

y01 + y02 = −6(10a1 + 4a2 + 3a3)

3a4 + 2a5
y01y02 = − 2520

3a4 + 2a5
. (5.4)

Letr1, r2, . . . , r5 andr̃1, r̃2, . . . , r̃5 be the roots (additional tor0 = −1) of (5.2a) corresponding
to y01 andy02, respectively. Setting

P(y0j ) = −2[(2a5 + 3a4)y
2
0j + 12(10a1 + 4a2 + 3a3)y0j − 7560] j = 1, 2 (5.5)

then (5.2a) implies that
5∏
i=1

ri = P(y01) = p
5∏
i=1

r̃i = P(y02) = q (5.6)

and
5∑
i=1

ri =
5∑
i=1

r̃i = 28 (5.7)

wherep, q are integers, and at least one of them is positive. Now, one should determiney0j ,
j = 1, 2, andai , i = 1, 2, . . . ,5 such that there is at least one principal branch. Let the branch
corresponding toy01 be the principal branch, thenp > 0. Equation (5.5) gives

P(y01) = 5040

(
1− y01

y02

)
= p P (y02) = 5040

(
1− y02

y01

)
= q (5.8)
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by using (5.4). Therefore,p, q satisfy the following Diophantine equation, ifpq 6= 0:

1

p
+

1

q
= 1

5040
. (5.9)

Equation (5.7) implies that there are 57 possible cases of(r1, r2, . . . , r5) such thatri are positive
distinct integers. The Diophantine equation has 27 integer solutions(p, q) such thatq < 0.
For each 27 cases of(p, q), y0j , j = 1, 2, andai , i = 2, . . . ,5 can be obtained from (5.4),
(5.8) and ∑

i 6=j
rirj = 323− a1y01

∑
i 6=j 6=k

rirj rk = −(15a1 + 2a2)y01 + 1988]∑
i 6=j 6=k 6=l

rirj rkrl = −a4y
2
01− 2(43a1 + 10a2 + 6a3)y01 + 7092

(5.10)

in terms ofa1. But there are only three out of 27 cases such that the resonances(r̃1, r̃2, . . . , r̃5)

corresponding toy02 are distinct integers. These cases and the corresponding simplified
equations are as follows.
Case 1:

y01 = 20

a1
(r1, r2, r3, r4, r5) = (2, 5, 6, 7, 8)

y02 = 60

a1
(r̃1, r̃2, r̃3, r̃4, r̃5) = (−3, 6, 7, 8, 10)

a2 = 3a1 a3 = 2a1 a4 = − 3
10a

2
1 a5 = − 3

5a
2
1

y(6) = a1(yy
(4) + 3y ′y ′′′ + 2y ′′2 − 3

10a1y
2y ′′ − 3

5a1yy
′2).

(5.11)

Case 2:

y01 = 18

a1
(r1, r2, r3, r4, r5) = (3, 4, 6, 7, 8)

y02 = 90

a1
(r̃1, r̃2, r̃3, r̃4, r̃5) = (−5, 6, 7, 8, 12)

a2 = 3a1 a3 = 2a1 a4 = − 2
9a

2
1 a5 = − 4

9a
2
1

y(6) = a1(yy
(4) + 3y ′y ′′′ + 2y ′′2 − 2

9a1y
2y ′′ − 4

9a1yy
′2).

(5.12)

Case 3:

y01 = 30

a1
(r1, r2, r3, r4, r5) = (2, 3, 6, 7, 10)

y02 = 60

a1
(r̃1, r̃2, r̃3, r̃4, r̃5) = (−2, 5, 6, 7, 12)

a2 = 2a1 a3 = a1 a4 = − 1
5a

2
1 a5 = − 2

5a
2
1

y(6) = a1(yy
(4) + 2y ′y ′′′ + y ′′2 − 1

5a1y
2y ′′ − 2

5a1yy
′2).

(5.13)

The compatibility conditions are identically satisfied for the first two cases but not for the third
case. Therefore, the third case will not be considered.

To obtain the canonical form of the sixth-order Painlevé-type equation whena6 = 0, one
should add the non-dominant terms with analytic coefficients ofz. That is,

y(6) = a1yy
(4) + a2y

′y ′′′ + a3y
′′2 + a4y

2y ′′ + a5yy
′2 +A(z)y(5) +B(z)y(4) +C(z)yy ′′′

+D(z)y ′′′ +E(z)y ′y ′′ + F(z)yy ′′ +G(z)y ′′ +H(z)y2y ′ + J (z)yy ′

+K(z)y ′2 +L(z)y ′ +M(z)y3 +N(z)y2 + P(z)y +R(z). (5.14)
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The coefficientsA(z), . . . , R(z) can be determined by using the compatibility conditions at
the resonances. Substituting

y = y01(z− z0)
−2 +

r5∑
j=1

yj (z− z0)
j−2 (5.15)

into (5.14) gives the recursion relation foryj . Then, one can findA, . . . , R such
that the recursion relations forj = r1, r2, r3, r4, r5 are identically satisfied, and hence
yr1, yr2, yr3, yr4, yr5 are arbitrary.

Case 1. By using the linear transformation (2.6), one can set

9a2
1A + 6a1C + 3a1E + 10H = 0 F = 0 a1 = 20 (5.16)

then,y01 = 1 andy1 = 0. The compatibility conditions atj = 2, 5, 6, 7, 8 imply that all the
coefficients are zero except

G = c1z + c2 L = 3c1 (5.17)

wherec1, c2 are constants. Then the canonical form for this case is

y(6) = 20(yy(4) + 3y ′y ′′′ + 2y ′′2 − 6y2y ′′ − 12yy ′2) + (c1z + c2)y
′′ + 3c1y

′. (5.18)

If c1 6= 0, replacingz + c2/c1 by z and then replacingz by γ z andy by βy such thatγ 2β = 1,
c1γ

5 = 1 in (5.18) gives

y(6) = 20(yy(4) + 3y ′y ′′′ + 2y ′′2 − 6y2y ′′ − 12yy ′2) + zy ′′ + 3y ′. (5.19)

Case 2. One can always choosey01 = 1, andy1 = y2 = 0 by choosing

10a2
1A + 6a1C + 3a1E + 9H = 0 10a2

1B + 9a1F + 6a1K + 27M = 0 a1 = 18.

(5.20)

Then, the recursion relation imply that if,y3, y4, y6, y7, andy8 are arbitrary thenA = C =
E = G = H = M = N = 0 and

B = − 1

12
(c1z + c2) D = −1

6
c1 F = K = c1z + c2 J = 2c1

L = c1

72
(c1z + c2) P = 1

36
c2

1 R = − c2
1

2592
(c1z + c2)

(5.21)

wherec1, c2 are arbitrary constants. Then the canonical form for this case is

y(6) = 18(yy(4) + 3y ′y ′′′ + 2y ′′2 − 4y2y ′′ − 8yy ′2)− 1

12
(c1z + c2)y

(4) − c1

6
y ′′′

+(c1z + c2)yy
′′ + 2c1yy

′ + (c1z + c2)y
′2 +

c1

72
(c1z + c2)y

′ +
c2

1

36
y

− c2
1

2592
(c1z + c2). (5.22)

If c1 6= 0, replacingz + c2/c1 by z and then replacingz by γ z andy by βy such thatγ 2β = 1,
c1γ

3 = 36 in (5.22) gives

y(6) = 18(yy(4) + 3y ′y ′′′ + 2y ′′2 − 4y2y ′′ − 8yy ′2)− 3zy(4) − 6y ′′′ + 36z(yy ′′ + y ′2)
+6(12yy ′ + 3zy ′ + 6y − 3z). (5.23)
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(b) a6 6= 0: Equation (5.2b) implies that there are three Painlevé branches corresponding
to (−2, y0j ), j = 1, 2, 3 wherey0j are the roots of (5.2b). (5.2b) implies that

3∏
j=1

y0j = 5040

a6

3∑
j=1

y0j = −2(3a4 + 2a5)

a6

∑
i 6=j

y0iy0j = 12

a6
(10a1 + 4a2 + 3a3).

(5.24)

If the resonances (exceptr0 = −1) areri, r̃i , r̂i , i = 1, 2, . . . ,5 corresponding toy01, y02, y03,
respectively, and if one sets

P(y0j ) = −2[(2a5 + 3a4)y
2
0j + 12(10a1 + 4a2 + 3a3)y0j − 7560] (5.25)

then, (5.2a) implies that

5∏
i=1

ri = P(y01)

5∏
i=1

r̃i = P(y02)

5∏
i=1

r̂i = P(y03) (5.26)

and
5∑
i=1

ri =
5∑
i=1

r̃i =
5∑
i=1

r̂i = 28. (5.27)

The condition ofri , r̃i , r̂i being integers and (5.25), (5.26) give

P(y01) = p1 P(y02) = p2 P(y03) = p3 (5.28)

wherep1, p2, p3 are integers, and at least one is positive. Then equations (5.24) and (5.25)
give

p1 = 5040

(
1− y01

y02

)(
1− y01

y03

)
p2 = 5040

(
1− y02

y01

)(
1− y02

y03

)
p3 = 5040

(
1− y03

y01

)(
1− y03

y02

)
.

(5.29)

By setting,κ = y02− y03, µ = y03− y01, andν = y01− y02, (5.29) then yields

p1 = −5040
µν

y02y03
p2 = −5040

κν

y01y03
p3 = −5040

κµ

y01y02
. (5.30)

Thus, ∑
i 6=j

pipj = (5040)2κµν

(
κ

y01
+
µ

y02
+
ν

y03

)
. (5.31)

But
κ

y01
+
µ

y02
+
ν

y03
= − κµν

y01y02y03
. (5.32)

Therefore, ∑
i 6=j

pipj = −(5040)2
κ2µ2ν2

y2
01y

2
02y

2
03

= 1

5040
p1p2p3 (5.33)

so that,pi , i = 1, 2, 3, satisfy the following Diophatine equation:

3∑
i=1

1

pi
= 1

5040
. (5.34)
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If the principal branch corresponds to(−2, y01), then the resonancesri , i = 1, 2, . . . ,5 are
positive distinct integers and thusp1 is a positive integer. Equation (5.30) yields

p1p2p3 = −(5040)3
κ2µ2ν2

y2
01y

2
02y

2
03

. (5.35)

Therefore, eitherp2 or p3 is a negative integer.
∑
ri = 28 andri being distinct positive

integers imply that there are 57 possible values ofp1. Then, one should find all integer
solutions(p2, p3) of (5.34) for each possible value ofp1. There are 3740 possible integer
values of(p1, p2, p3) such thatp1, p2 > 0 andp3 < 0. Equations (5.24), (5.29) and∑
i 6=j

rirj = 323− a1y01

∑
i 6=j 6=k

rirj rk = −[(15a1 + 2a2)y01− 1988]∑
i 6=j 6=k 6=l

rirj rkrl = −a4y
2
01− 2(43a1 + 10a2 + 6a3)y01 + 7092

(5.36)

determine all the coefficients of (5.2a) in terms ofa1 for all possible values of(p1, p2, p3).
Now one should find the roots̃ri, r̂i of (5.2a). There are only three cases such thatr̃i , r̂i are
distinct integers. The cases and the corresponding simplified equations are as follows.
Case 1:

y01 = 36

a1
(r1, r2, r3, r4, r5) = (2, 3, 4, 9, 10)

y02 = 252

a1
(r̃1, r̃2, r̃3, r̃4, r̃5) = (−5,−7, 10, 12, 18)

y03 = 72

a1
(r̂1, r̂2, r̂3, r̂4, r̂5) = (−2, 3, 5, 10, 12)

a2 = 5
3a1 a3 = 5

6a1 a4 = a5 = − 5
18a

2
1 a6 = 5

648a
3
1

y(6) = a1(yy
(4) + 5

3y
′y ′′′ + 5

6y
′′2 − 5

18a1y
2y ′′ − 5

18a1yy
′2 + 5

648a
2
1y

4).

(5.37)

Case 2:

y01 = 28

a1
(r1, r2, r3, r4, r5) = (2, 4, 5, 7, 10)

y02 = 168

a1
(r̃1, r̃2, r̃3, r̃4, r̃5) = (−3,−5, 10, 12, 14)

y03 = 84

a1
(r̂1, r̂2, r̂3, r̂4, r̂5) = (−3, 2, 7, 10, 12)

a2 = 2a1 a3 = 3
2a1 a4 = a5 = − 5

14a
2
1 a6 = 5

392a
3
1

y(6) = a1(yy
(4) + 2y ′y ′′′ + 3

2y
′′2 − 5

14a1y
2y ′′ − 5

14a1yy
′2 + 5

392a
2
1y

4).

(5.38)

Case 3:

y01 = 21

a1
(r1, r2, r3, r4, r5) = (3, 4, 5, 7, 9)

y02 = 336

a1
(r̃1, r̃2, r̃3, r̃4, r̃5) = (−5,−11, 12, 14, 18)

y03 = 105

a1
(r̂1, r̂2, r̂3, r̂4, r̂5) = (−5, 3, 7, 11, 12)

a2 = 5
2a1 a3 = 7

4a1 a4 = − 2
7a

2
1 a5 = − 5

14a
2
1 a6 = 1

147a
3
1

y(6) = a1(yy
(4) + 5

2y
′y ′′′ + 7

4y
′′2 − 2

7a1y
2y ′′ − 5

14a1yy
′2 + 1

147a
2
1y

4).

(5.39)

For all three cases, the compatibility conditions are identically satisfied.
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To obtain the canonical form of the sixth-order Painlevé-type equation, one should add
the non-dominant terms with analytic coefficients ofz. That is,

y(6) = a1yy
(4) + a2y

′y ′′′ + a3y
′′2 + a4y

2y ′′ + a5yy
′2 + a6y

4 +A(z)y(5) +B(z)y(4)

+C(z)yy ′′′ +D(z)y ′′′ +E(z)y ′y ′′ + F(z)yy ′′ +G(z)y ′′ +H(z)y2y ′ + J (z)yy ′

+K(z)y ′2 +L(z)y ′ +M(z)y3 +N(z)y2 + P(z)y +R(z). (5.40)

The coefficientsA(z), . . . , R(z) can be determined by using the compatibility conditions at the
resonances. Substituting (5.15) into (5.40) gives the recursion relation foryj . Then, one can
findA, . . . , R such that the recursion relations forj = r1, r2, r3, r4, r5 are identically satisfied,
and henceyr1, yr2, yr3, yr4, yr5 are arbitrary.

Case 1. By using the linear transformation (2.6), one can set

5a2
1A + 6a1C + 3a1E + 18H = 0 M = 0 a1 = 36 (5.41)

then,y01 = 1 andy1 = 0. The compatibility conditions atj = 2, 3, 4, 9, 10 imply that all the
coefficients are zero except

G = −c1

6
N = c1 P = c2 R = c3 (5.42)

whereci are arbitrary constants. Therefore, the canonical form for this case is

y(6) = 36

(
yy(4) +

5

3
y ′y ′′′ +

5

6
y ′′2 − 10y2y ′′ − 10yy ′2 + 10y4

)
− c1

6
y ′′ + c1y

2 + c2y + c3.

(5.43)

Case 2. One can always choosey01 = 1, andy1 = 0 by setting

45a2
1A + 42a1C + 21a1E + 98H = 0 M = 0 a1 = 28. (5.44)

Then, the recursion relations imply that if,y2, y4, y5, y7, andy10 are arbitrary then all the
coefficients are zero except

G = −c1

6
N = c1 P = c2 R = c3z + c4 (5.45)

whereci are arbitrary constants. Then the canonical form is

y(6) = 28(yy(4) + 2y ′y ′′′ + 3
2y
′′2 − 10y2y ′′ − 10yy ′2 + 10y4)

−c1

6
y ′′ + c1y

2 + c2y + c3z + c4. (5.46)

(5.46) can also be obtained by using (1.16).

Case 3. One can always sety01 = 1, andy1 = y2 = 0 by choosing

40a2
1A + 28a1C + 14a1E + 49H = 0

40a2
1B + 42a1F + 28a1K + 147M = 0 a1 = 21.

(5.47)

Then, the recursion relations imply that if,y3, y4, y5, y7, andy9 are arbitrary then all the
coefficients are zero except

B = c1

15
F = −c1 K = −3

4
c1 P = c2 R = c3 (5.48)

whereci are arbitrary constants. Then the canonical form is

y(6) = 21(yy(4) + 5
2y
′y ′′′ + 7

4y
′′2 − 6y2y ′′ − 15

2 yy
′2 + 3y4)

− c1

15
y(4) − c1yy

′′ − 3

4
c1y
′2 + c2y + c3. (5.49)
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In the procedure used to obtain higher-order Painlevé-type equations, the existence of at
least one principal branch has been imposed. However, the compatibility conditions at the
positive resonances for the secondary branches are identically satisfied for each case. Instead
of having positive distinct integer resonances, one can consider the case of distinct integer
resonances. In this case it is possible to obtain equations like Chazy’s equation (1.9) which has
three negative distinct integer resonances. If all the resonances are negative distinct integers
then there are no compatibility conditions and hence, no non-dominant term can be introduced
in this procedure. Chazy’s equation, which is a simplified equation, can be obtained from the
second Painlev́e equation by using a similar procedure.

Since the simplified version of PI is a constant coefficient polynomial-type equation,
higher-order constant coefficient polynomial types of simplified equations were considered.
However, if one starts from PIII , . . . ,PVI one gets the higher-order Painlevé-type equations of
the form (1.20).
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